Victor WebSearch MCP - Enterprise-Grade Web Search Service

Published: 2025-08-12 | Author: Victor Mustar | Platform: Hugging Face Space | Likes: 133 ⭐
English Documentation
Overview
Victor WebSearch MCP is a production-ready web search server that empowers AI assistants with real-time internet access capabilities. Built on the Gradio MCP framework and powered by Serper API, it provides high-quality search results with intelligent content extraction and structured data formatting.
This server bridges the gap between language models and the dynamic web, enabling AI systems to retrieve, process, and deliver up-to-date information from the internet. Whether you need general web search or real-time news monitoring, Victor WebSearch MCP delivers reliable, rate-limited, and enterprise-ready search functionality.
Key Highlights:
- 🔍 Dual search modes: General web search and news-specific search
- 🌐 Powered by Serper API for high-quality search results
- 📄 Intelligent content extraction using Trafilatura
- ⚡ Server-Sent Events (SSE) transport for remote access
- 🛡️ Built-in rate limiting (200 requests/hour)
- 🚀 Deploy locally or use remote HF Space
- 🎯 Production-grade reliability with structured output
Architecture & Technology Stack
Core Technologies:
- Framework: Gradio MCP - Modern Python framework for MCP server development
- Search Engine: Serper API - Google Search API for developers
- Content Extraction: Trafilatura - Advanced web content extraction library
- HTTP Client: httpx - Modern, async-capable HTTP client
- Rate Limiting: limits - Request rate limiting library
- Date Processing: python-dateutil - Robust date/time handling
Transport Method:
- HTTP Server-Sent Events (SSE) over
/gradio_api/mcp/sseendpoint - Stateless, scalable architecture
- Compatible with any MCP client supporting SSE transport
Deployment Options:
- Remote HF Space (Recommended): Direct SSE connection to hosted service
- Local Python Process: Clone and run on your infrastructure
- Docker Container: Containerized deployment for production environments
Features
1. Dual Search Modes
General Search Mode (search_type: "search")
- Ideal for: Blog posts, documentation, articles, research papers
- Broad web coverage across all content types
- Comprehensive result ranking by relevance
- Full-text content extraction from search results
- Use cases: Research, fact-checking, content discovery
News Search Mode (search_type: "news")
- Ideal for: Real-time news, breaking stories, current events
- Time-sensitive news article prioritization
- Publication date and source metadata
- Specialized news content extraction
- Use cases: News monitoring, trend tracking, real-time updates
2. Intelligent Content Extraction
The server uses Trafilatura, a state-of-the-art web scraping library, to extract clean, structured content from web pages:
- Main Content Isolation: Removes navigation, ads, footers, sidebars
- Format Preservation: Maintains text structure, paragraphs, and hierarchy
- Metadata Extraction: Captures authors, dates, descriptions
- Multi-language Support: Works with content in any language
- Fallback Handling: Graceful degradation when extraction fails
- Performance Optimized: Fast extraction with minimal resource usage
3. Structured Output Format
Every search result returns a consistent, machine-readable structure:
1 | { |
Benefits:
- Easy parsing and processing by AI systems
- Consistent field names and data types
- Comprehensive information for decision-making
- Metadata for filtering and sorting
4. Flexible Result Control
Configure the number of results returned per search:
- Range: 1-20 results per query
- Default: 4 results (optimal for most AI use cases)
- Trade-offs: More results = more comprehensive but slower response
- Recommendation: Start with 4, increase for research-heavy tasks
5. Rate Limiting Protection
Built-in rate limiting prevents abuse and ensures fair usage:
- Limit: 200 requests per hour per client
- Purpose: Protects against accidental loops and malicious usage
- Behavior: Returns HTTP 429 when limit exceeded
- Reset: Rolling 1-hour window
- Monitoring: Track usage through response headers
6. Gradio MCP Integration
Leverages Gradio’s MCP capabilities for robust server implementation:
- Standard MCP Protocol: Full compliance with MCP specification
- Automatic Discovery: Tools exposed via MCP introspection
- Error Handling: Structured error responses
- Logging: Built-in request/response logging
- Hot Reload: Development mode with auto-reload
7. SSE Transport Support
Server-Sent Events provide reliable, scalable remote access:
- Stateless: No persistent connections required
- Firewall-Friendly: Works over standard HTTP/HTTPS
- Real-time: Immediate response delivery
- Compatible: Works with all major MCP clients
- Remote-First: Designed for cloud deployment
Tools & API Reference
Tool: search_web
Description: Performs web search and returns structured results with full content extraction.
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
query |
string | Yes | - | Search query string. Supports natural language and advanced search operators. |
num_results |
integer | No | 4 | Number of results to return. Valid range: 1-20. |
search_type |
string | No | “search” | Search mode: “search” for general web search, “news” for news articles. |
Return Value:
Array of search result objects:
1 | [ |
Error Responses:
| Error | HTTP Code | Description |
|---|---|---|
INVALID_QUERY |
400 | Empty or malformed query string |
INVALID_NUM_RESULTS |
400 | num_results outside 1-20 range |
INVALID_SEARCH_TYPE |
400 | search_type not “search” or “news” |
RATE_LIMIT_EXCEEDED |
429 | More than 200 requests in 1 hour |
SERPER_API_ERROR |
502 | Upstream Serper API failure |
EXTRACTION_FAILED |
500 | Content extraction error |
Usage Examples:
1 | # General web search with default settings |
Installation & Configuration
Prerequisites
- Python: 3.8 or higher
- Serper API Key: Sign up at serper.dev (free tier available)
- MCP Client: Claude Desktop, VS Code with MCP extension, Cursor, Cline, or any MCP-compatible client
Option 1: Remote HF Space (Recommended)
The simplest deployment method - no local installation required.
Step 1: Configure MCP Client
Add to your MCP client configuration (e.g., claude_desktop_config.json):
1 | { |
Step 2: Restart MCP Client
That’s it! The server is hosted on Hugging Face and ready to use.
Advantages:
- Zero local setup
- Always up-to-date
- No maintenance required
- High availability
- Automatic scaling
Considerations:
- Requires internet connection
- Shared rate limits with other users
- Public HF Space availability dependent
Option 2: Local Python Process
For full control and private deployment.
Step 1: Clone Repository
1 | git clone https://huggingface.co/spaces/victor/websearch |
Step 2: Install Dependencies
1 | # Option A: Use requirements.txt |
Step 3: Configure Environment
1 | export SERPER_API_KEY='your-serper-api-key-here' |
Step 4: Run Server
1 | python app_mcp.py |
Step 5: Configure MCP Client
1 | { |
Advantages:
- Full control over server
- Private API key usage
- Custom rate limits
- Local network access
- Debug capabilities
Option 3: Docker Deployment
For production environments.
Create Dockerfile:
1 | FROM python:3.11-slim |
Build and Run:
1 | docker build -t victor-websearch . |
Configure MCP Client:
1 | { |
Use Cases
1. AI Real-Time Information Queries
Enable AI assistants to access current information beyond their training data cutoff.
Scenario: User asks “What are the latest developments in quantum computing?”
Flow:
- AI recognizes need for current information
- Calls
search_web(query="quantum computing latest developments 2025", search_type="news") - Receives recent articles with full content
- Synthesizes information into comprehensive answer
- Cites sources from search results
Benefits: AI provides accurate, up-to-date responses with source attribution.
2. News Monitoring & Alerting
Track specific topics and receive real-time updates.
Scenario: Monitor competitor announcements
Implementation:
1 | def monitor_competitor(company_name): |
Benefits: Automated competitor intelligence gathering.
3. Research Assistance
Accelerate research by quickly finding and extracting relevant content.
Scenario: Literature review for academic paper
Implementation:
1 | def research_topic(topic, num_sources=20): |
Benefits: Rapid source discovery with full-text access.
4. Content Aggregation
Collect information from multiple sources for comprehensive analysis.
Scenario: Market research report generation
Implementation:
1 | def aggregate_market_insights(market): |
Benefits: Multi-source data compilation for informed decision-making.
5. Fact-Checking
Verify AI-generated content against current web sources.
Scenario: Validate statistical claims
Implementation:
1 | def fact_check(claim): |
Benefits: Improved accuracy and trustworthiness of AI outputs.
6. Competitive Intelligence
Monitor and analyze competitor activities through public information.
Scenario: Track competitor product launches
Implementation:
1 | def competitor_analysis(competitors): |
Benefits: Systematic competitor monitoring and strategic insights.
Best Practices
Query Optimization
Do’s:
- Use specific, descriptive search terms
- Include relevant keywords and context
- Use quotes for exact phrases
- Add date/time qualifiers when needed
- Specify content type (guide, tutorial, review)
Don’ts:
- Avoid overly broad single-word queries
- Don’t use excessive boolean operators (handled by Serper)
- Avoid special characters unless necessary
- Don’t include meta-instructions in query
Examples:
Good: "Python asyncio" tutorial beginners 2025
Bad: python
Good: climate change impact coastal cities research
Bad: climate
Result Count Selection
| Use Case | Recommended Count | Rationale |
|---|---|---|
| Quick fact lookup | 1-3 | Fastest response, focused results |
| General Q&A | 4-6 | Balanced coverage and speed |
| Research | 10-15 | Comprehensive source gathering |
| Monitoring | 15-20 | Maximum coverage for tracking |
Search Type Selection
| Content Type | Use “search” | Use “news” |
|---|---|---|
| Documentation | ✓ | ✗ |
| Blog posts | ✓ | ~ |
| Breaking news | ✗ | ✓ |
| Current events | ~ | ✓ |
| Research papers | ✓ | ✗ |
| Product reviews | ✓ | ~ |
| Financial updates | ~ | ✓ |
Rate Limit Management
Strategies:
- Cache Results: Store search results locally to reduce repeated queries
- Batch Queries: Combine related searches when possible
- Prioritize: Focus on high-value queries first
- Monitor Usage: Track API calls to avoid hitting limits
- Implement Backoff: Retry with exponential backoff on 429 errors
Example Caching:
1 | from functools import lru_cache |
Error Handling
Robust Implementation:
1 | def safe_search(query, max_retries=3): |
Troubleshooting
Connection Issues
Symptom: Cannot connect to MCP server
Solutions:
- Verify SSE URL is correct and accessible
- Check firewall/proxy settings
- Ensure MCP client supports SSE transport
- Test endpoint manually:
curl https://victor-websearch.hf.space/gradio_api/mcp/sse - Check HF Space status (for remote deployment)
API Key Problems
Symptom: SERPER_API_ERROR or authentication failures
Solutions:
- Verify Serper API key is valid
- Check API key has not exceeded quota
- Ensure environment variable is set correctly
- Test API key directly:
curl -X POST https://google.serper.dev/search -H "X-API-KEY: your-key" -d '{"q":"test"}' - Regenerate API key if compromised
Rate Limiting
Symptom: HTTP 429 responses
Solutions:
- Reduce query frequency
- Implement caching layer
- Use exponential backoff
- Consider deploying private instance
- Upgrade Serper API plan for higher limits
Content Extraction Failures
Symptom: Empty or partial content in results
Solutions:
- Some websites block automated access
- JavaScript-heavy sites may not extract well
- Check if site has robots.txt restrictions
- Fall back to snippet when content is empty
- Consider alternative sources for problematic domains
Performance Issues
Symptom: Slow response times
Solutions:
- Reduce
num_resultsparameter - Use general search instead of news for faster results
- Check network latency to HF Space
- Consider local deployment for lower latency
- Implement parallel search for multiple queries
Security Considerations
API Key Protection
- Never commit API keys to version control
- Use environment variables for key storage
- Implement key rotation policies
- Monitor API usage for anomalies
- Use separate keys for development and production
Rate Limiting
- Protects against accidental loops in AI systems
- Prevents resource exhaustion attacks
- Ensures fair usage across clients
- Enforces cost control for API usage
Data Privacy
- Search queries and results pass through Serper API
- No persistent storage of search data by default
- Consider local deployment for sensitive queries
- Review Serper API privacy policy for compliance
- Implement query logging controls as needed
Content Validation
- Verify sources before trusting content
- Implement malicious content filtering
- Check SSL certificates of extracted sites
- Sanitize HTML/script from extracted content
- Validate URL schemes (http/https only)
Performance Metrics
Typical Response Times (from remote HF Space):
- Simple search (4 results): 2-4 seconds
- News search (10 results): 4-6 seconds
- High result count (20 results): 6-10 seconds
Factors Affecting Performance:
- Number of results requested
- Content extraction complexity
- Network latency to HF Space
- Serper API response time
- Target website response time
Optimization Tips:
- Start with fewer results and increase as needed
- Use local deployment for lowest latency
- Implement result caching
- Parallelize independent searches
- Pre-fetch for predictable queries
FAQ
Q: Do I need my own Serper API key?
A: For local deployment, yes. For remote HF Space, the hosted instance includes API access (shared rate limits).
Q: What’s the difference between this and native web search tools?
A: Victor WebSearch provides structured output, content extraction, and MCP integration specifically designed for AI systems.
Q: Can I use this in production?
A: Yes, with proper rate limiting, error handling, and monitoring. Consider local deployment for production workloads.
Q: Does it work with Claude Desktop?
A: Yes, fully compatible with Claude Desktop and all MCP clients supporting SSE transport.
Q: How many languages does it support?
A: Serper API supports all languages. Trafilatura content extraction works with 200+ languages.
Q: Can I filter results by date?
A: Add date qualifiers to your query (e.g., “after:2025-01-01”) or use news search for recent content.
Q: Is the extracted content copyrighted?
A: Yes, respect copyright and terms of service of source websites. Use content according to fair use principles.
Q: Can I increase the rate limit?
A: For remote HF Space, limits are shared. Deploy locally with your own Serper API key for dedicated limits.
Q: Does it support advanced search operators?
A: Yes, Serper API supports Google search operators (site:, intitle:, filetype:, etc.).
Q: How fresh is the news search?
A: News search returns articles from the last 24-48 hours by default. Serper API updates in near real-time.
Compatibility
MCP SDK Version: Gradio MCP framework (compatible with MCP protocol v1.0+)
Supported MCP Clients:
- Claude Desktop (macOS and Windows)
- VS Code with MCP extension
- Cursor IDE
- Cline
- Continue
- Any client supporting MCP over SSE transport
Transport Methods: Server-Sent Events (SSE) over HTTP/HTTPS
Platform: Hugging Face Space (cloud-hosted) or self-hosted
Python Requirements: Python 3.8, 3.9, 3.10, 3.11, 3.12
Links & Resources
- Hugging Face Space: https://huggingface.co/spaces/victor/websearch
- Serper API: https://serper.dev
- Trafilatura Docs: https://trafilatura.readthedocs.io
- Gradio MCP: https://www.gradio.app/guides/creating-a-gradio-mcp-server
- MCP Protocol: https://modelcontextprotocol.io
中文文档
概述
Victor WebSearch MCP 是一个生产级的网页搜索服务器,为 AI 助手提供实时互联网访问能力。该服务基于 Gradio MCP 框架构建,由 Serper API 提供支持,提供高质量的搜索结果、智能内容提取和结构化数据格式化。
该服务器在语言模型与动态网络之间架起了桥梁,使 AI 系统能够从互联网检索、处理并交付最新信息。无论您需要通用网页搜索还是实时新闻监控,Victor WebSearch MCP 都能提供可靠、限速且企业就绪的搜索功能。
核心亮点:
- 🔍 双搜索模式:通用网页搜索和新闻专项搜索
- 🌐 由 Serper API 提供支持,确保高质量搜索结果
- 📄 使用 Trafilatura 进行智能内容提取
- ⚡ 支持服务器发送事件(SSE)传输,方便远程访问
- 🛡️ 内置速率限制(每小时 200 次请求)
- 🚀 支持本地部署或使用远程 HF Space
- 🎯 生产级可靠性,结构化输出
架构与技术栈
核心技术:
- 框架: Gradio MCP - 用于 MCP 服务器开发的现代 Python 框架
- 搜索引擎: Serper API - 面向开发者的 Google 搜索 API
- 内容提取: Trafilatura - 先进的网页内容提取库
- HTTP 客户端: httpx - 现代、支持异步的 HTTP 客户端
- 速率限制: limits - 请求速率限制库
- 日期处理: python-dateutil - 强大的日期/时间处理
传输方式:
- 通过
/gradio_api/mcp/sse端点的 HTTP 服务器发送事件(SSE) - 无状态、可扩展架构
- 与任何支持 SSE 传输的 MCP 客户端兼容
部署选项:
- 远程 HF Space(推荐):直接 SSE 连接到托管服务
- 本地 Python 进程:在您的基础设施上克隆并运行
- Docker 容器:用于生产环境的容器化部署
功能特性
1. 双搜索模式
通用搜索模式 (search_type: "search")
- 适用于:博客文章、文档、文章、研究论文
- 覆盖所有内容类型的广泛网页
- 按相关性进行全面排序
- 从搜索结果中提取全文内容
- 使用场景:研究、事实核查、内容发现
新闻搜索模式 (search_type: "news")
- 适用于:实时新闻、突发新闻、当前事件
- 时间敏感的新闻文章优先级排序
- 包含发布日期和来源元数据
- 专门的新闻内容提取
- 使用场景:新闻监控、趋势跟踪、实时更新
2. 智能内容提取
该服务器使用 Trafilatura(一个最先进的网页抓取库)从网页中提取干净、结构化的内容:
- 主内容隔离:删除导航、广告、页脚、侧边栏
- 格式保留:保持文本结构、段落和层次结构
- 元数据提取:捕获作者、日期、描述
- 多语言支持:适用于任何语言的内容
- 回退处理:提取失败时优雅降级
- 性能优化:快速提取,最小资源使用
3. 结构化输出格式
每个搜索结果返回一致的、机器可读的结构:
1 | { |
优势:
- AI 系统易于解析和处理
- 一致的字段名称和数据类型
- 为决策提供全面的信息
- 用于过滤和排序的元数据
4. 灵活的结果控制
配置每次搜索返回的结果数量:
- 范围:每次查询 1-20 个结果
- 默认值:4 个结果(对大多数 AI 使用场景最优)
- 权衡:更多结果 = 更全面但响应更慢
- 建议:从 4 个开始,对研究密集型任务增加
5. 速率限制保护
内置速率限制防止滥用并确保公平使用:
- 限制:每个客户端每小时 200 次请求
- 目的:防止意外循环和恶意使用
- 行为:超过限制时返回 HTTP 429
- 重置:滚动 1 小时窗口
- 监控:通过响应头跟踪使用情况
6. Gradio MCP 集成
利用 Gradio 的 MCP 功能实现强大的服务器实现:
- 标准 MCP 协议:完全符合 MCP 规范
- 自动发现:通过 MCP 内省公开工具
- 错误处理:结构化错误响应
- 日志记录:内置请求/响应日志记录
- 热重载:开发模式下自动重载
7. SSE 传输支持
服务器发送事件提供可靠、可扩展的远程访问:
- 无状态:不需要持久连接
- 防火墙友好:通过标准 HTTP/HTTPS 工作
- 实时:立即交付响应
- 兼容:与所有主流 MCP 客户端兼容
- 远程优先:专为云部署设计
工具与 API 参考
工具:search_web
描述:执行网页搜索并返回带有完整内容提取的结构化结果。
参数:
| 参数 | 类型 | 必需 | 默认值 | 描述 |
|---|---|---|---|---|
query |
string | 是 | - | 搜索查询字符串。支持自然语言和高级搜索运算符。 |
num_results |
integer | 否 | 4 | 要返回的结果数量。有效范围:1-20。 |
search_type |
string | 否 | “search” | 搜索模式:”search” 用于通用网页搜索,”news” 用于新闻文章。 |
返回值:
搜索结果对象数组:
1 | [ |
错误响应:
| 错误 | HTTP 代码 | 描述 |
|---|---|---|
INVALID_QUERY |
400 | 空或格式错误的查询字符串 |
INVALID_NUM_RESULTS |
400 | num_results 超出 1-20 范围 |
INVALID_SEARCH_TYPE |
400 | search_type 不是 “search” 或 “news” |
RATE_LIMIT_EXCEEDED |
429 | 1 小时内超过 200 次请求 |
SERPER_API_ERROR |
502 | 上游 Serper API 故障 |
EXTRACTION_FAILED |
500 | 内容提取错误 |
使用示例:
1 | # 使用默认设置进行通用网页搜索 |
安装与配置
前置要求
- Python:3.8 或更高版本
- Serper API 密钥:在 serper.dev 注册(有免费层级)
- MCP 客户端:Claude Desktop、带 MCP 扩展的 VS Code、Cursor、Cline 或任何兼容 MCP 的客户端
选项 1:远程 HF Space(推荐)
最简单的部署方法 - 无需本地安装。
步骤 1:配置 MCP 客户端
添加到您的 MCP 客户端配置(例如 claude_desktop_config.json):
1 | { |
步骤 2:重启 MCP 客户端
就是这样!服务器托管在 Hugging Face 上,随时可用。
优势:
- 零本地设置
- 始终保持最新
- 无需维护
- 高可用性
- 自动扩展
注意事项:
- 需要互联网连接
- 与其他用户共享速率限制
- 依赖于公共 HF Space 的可用性
选项 2:本地 Python 进程
用于完全控制和私有部署。
步骤 1:克隆仓库
1 | git clone https://huggingface.co/spaces/victor/websearch |
步骤 2:安装依赖
1 | # 选项 A:使用 requirements.txt |
步骤 3:配置环境
1 | export SERPER_API_KEY='your-serper-api-key-here' |
步骤 4:运行服务器
1 | python app_mcp.py |
步骤 5:配置 MCP 客户端
1 | { |
优势:
- 完全控制服务器
- 私有 API 密钥使用
- 自定义速率限制
- 本地网络访问
- 调试能力
选项 3:Docker 部署
用于生产环境。
创建 Dockerfile:
1 | FROM python:3.11-slim |
构建和运行:
1 | docker build -t victor-websearch . |
配置 MCP 客户端:
1 | { |
使用场景
1. AI 实时信息查询
使 AI 助手能够访问超出其训练数据截止日期的当前信息。
场景:用户询问”量子计算的最新进展是什么?”
流程:
- AI 识别需要当前信息
- 调用
search_web(query="量子计算最新进展 2025", search_type="news") - 接收包含完整内容的最新文章
- 将信息综合成全面的答案
- 引用搜索结果中的来源
优势:AI 提供准确、最新的响应,并附有来源说明。
2. 新闻监控与警报
跟踪特定主题并接收实时更新。
场景:监控竞争对手公告
实现:
1 | def monitor_competitor(company_name): |
优势:自动化竞争对手情报收集。
3. 研究辅助
通过快速查找和提取相关内容加速研究。
场景:学术论文的文献综述
实现:
1 | def research_topic(topic, num_sources=20): |
优势:快速发现来源并获得全文访问。
4. 内容聚合
从多个来源收集信息以进行综合分析。
场景:市场研究报告生成
实现:
1 | def aggregate_market_insights(market): |
优势:多来源数据汇编,用于明智决策。
5. 事实核查
根据当前网络来源验证 AI 生成的内容。
场景:验证统计声明
实现:
1 | def fact_check(claim): |
优势:提高 AI 输出的准确性和可信度。
6. 竞争情报
通过公开信息监控和分析竞争对手活动。
场景:跟踪竞争对手产品发布
实现:
1 | def competitor_analysis(competitors): |
优势:系统性竞争对手监控和战略洞察。
最佳实践
查询优化
应该做的:
- 使用具体、描述性的搜索词
- 包含相关的关键词和上下文
- 对精确短语使用引号
- 需要时添加日期/时间限定符
- 指定内容类型(指南、教程、评论)
不应该做的:
- 避免过于宽泛的单词查询
- 不要使用过多的布尔运算符(由 Serper 处理)
- 除非必要,避免特殊字符
- 不要在查询中包含元指令
示例:
好:"Python asyncio" 教程 初学者 2025
不好:python
好:气候变化 影响 沿海城市 研究
不好:气候
结果数量选择
| 使用场景 | 推荐数量 | 理由 |
|---|---|---|
| 快速事实查找 | 1-3 | 最快响应,集中结果 |
| 一般问答 | 4-6 | 平衡覆盖范围和速度 |
| 研究 | 10-15 | 全面的来源收集 |
| 监控 | 15-20 | 跟踪的最大覆盖范围 |
搜索类型选择
| 内容类型 | 使用 “search” | 使用 “news” |
|---|---|---|
| 文档 | ✓ | ✗ |
| 博客文章 | ✓ | ~ |
| 突发新闻 | ✗ | ✓ |
| 当前事件 | ~ | ✓ |
| 研究论文 | ✓ | ✗ |
| 产品评论 | ✓ | ~ |
| 财务更新 | ~ | ✓ |
速率限制管理
策略:
- 缓存结果:本地存储搜索结果以减少重复查询
- 批量查询:尽可能合并相关搜索
- 优先级排序:首先关注高价值查询
- 监控使用情况:跟踪 API 调用以避免达到限制
- 实施退避:在 429 错误时使用指数退避重试
缓存示例:
1 | from functools import lru_cache |
错误处理
健壮的实现:
1 | def safe_search(query, max_retries=3): |
故障排除
连接问题
症状:无法连接到 MCP 服务器
解决方案:
- 验证 SSE URL 是否正确且可访问
- 检查防火墙/代理设置
- 确保 MCP 客户端支持 SSE 传输
- 手动测试端点:
curl https://victor-websearch.hf.space/gradio_api/mcp/sse - 检查 HF Space 状态(用于远程部署)
API 密钥问题
症状:SERPER_API_ERROR 或认证失败
解决方案:
- 验证 Serper API 密钥是否有效
- 检查 API 密钥是否超过配额
- 确保环境变量设置正确
- 直接测试 API 密钥:
curl -X POST https://google.serper.dev/search -H "X-API-KEY: your-key" -d '{"q":"test"}' - 如果密钥泄露,重新生成
速率限制
症状:HTTP 429 响应
解决方案:
- 降低查询频率
- 实施缓存层
- 使用指数退避
- 考虑部署私有实例
- 升级 Serper API 计划以获得更高限制
内容提取失败
症状:结果中内容为空或部分
解决方案:
- 某些网站阻止自动访问
- JavaScript 密集型网站可能提取效果不佳
- 检查网站是否有 robots.txt 限制
- 当内容为空时回退到摘要
- 考虑为问题域名使用替代来源
性能问题
症状:响应时间慢
解决方案:
- 减少
num_results参数 - 使用通用搜索而不是新闻搜索以获得更快结果
- 检查到 HF Space 的网络延迟
- 考虑本地部署以降低延迟
- 为多个查询实施并行搜索
安全考虑
API 密钥保护
- 永远不要提交 API 密钥到版本控制
- 使用环境变量存储密钥
- 实施密钥轮换策略
- 监控 API 使用情况的异常
- 为开发和生产使用单独的密钥
速率限制
- 防止 AI 系统中的意外循环
- 防止资源耗尽攻击
- 确保客户端之间的公平使用
- 强制执行 API 使用的成本控制
数据隐私
- 搜索查询和结果通过 Serper API
- 默认情况下不持久存储搜索数据
- 对敏感查询考虑本地部署
- 查看 Serper API 隐私政策以确保合规
- 根据需要实施查询日志记录控制
内容验证
- 在信任内容之前验证来源
- 实施恶意内容过滤
- 检查提取网站的 SSL 证书
- 清理提取内容中的 HTML/脚本
- 验证 URL 方案(仅 http/https)
性能指标
典型响应时间(从远程 HF Space):
- 简单搜索(4 个结果):2-4 秒
- 新闻搜索(10 个结果):4-6 秒
- 高结果数量(20 个结果):6-10 秒
影响性能的因素:
- 请求的结果数量
- 内容提取复杂度
- 到 HF Space 的网络延迟
- Serper API 响应时间
- 目标网站响应时间
优化提示:
- 从较少的结果开始,根据需要增加
- 使用本地部署以获得最低延迟
- 实施结果缓存
- 并行化独立搜索
- 为可预测的查询预取
常见问题
问:我需要自己的 Serper API 密钥吗?
答:对于本地部署,是的。对于远程 HF Space,托管实例包含 API 访问(共享速率限制)。
问:这与原生网页搜索工具有什么区别?
答:Victor WebSearch 提供结构化输出、内容提取和专为 AI 系统设计的 MCP 集成。
问:我可以在生产环境中使用吗?
答:可以,前提是有适当的速率限制、错误处理和监控。对于生产工作负载,考虑本地部署。
问:它与 Claude Desktop 兼容吗?
答:是的,与 Claude Desktop 和所有支持 SSE 传输的 MCP 客户端完全兼容。
问:它支持多少种语言?
答:Serper API 支持所有语言。Trafilatura 内容提取适用于 200+ 种语言。
问:我可以按日期过滤结果吗?
答:在查询中添加日期限定符(例如”after:2025-01-01”)或使用新闻搜索获取最新内容。
问:提取的内容是否受版权保护?
答:是的,尊重来源网站的版权和服务条款。根据合理使用原则使用内容。
问:我可以提高速率限制吗?
答:对于远程 HF Space,限制是共享的。使用您自己的 Serper API 密钥本地部署可获得专用限制。
问:它支持高级搜索运算符吗?
答:是的,Serper API 支持 Google 搜索运算符(site:、intitle:、filetype: 等)。
问:新闻搜索的时效性如何?
答:新闻搜索默认返回过去 24-48 小时的文章。Serper API 近乎实时更新。
兼容性
MCP SDK 版本:Gradio MCP 框架(与 MCP 协议 v1.0+ 兼容)
支持的 MCP 客户端:
- Claude Desktop(macOS 和 Windows)
- 带 MCP 扩展的 VS Code
- Cursor IDE
- Cline
- Continue
- 任何支持 MCP over SSE 传输的客户端
传输方式:通过 HTTP/HTTPS 的服务器发送事件(SSE)
平台:Hugging Face Space(云托管)或自托管
Python 要求:Python 3.8、3.9、3.10、3.11、3.12
链接与资源
- Hugging Face Space:https://huggingface.co/spaces/victor/websearch
- Serper API:https://serper.dev
- Trafilatura 文档:https://trafilatura.readthedocs.io
- Gradio MCP:https://www.gradio.app/guides/creating-a-gradio-mcp-server
- MCP 协议:https://modelcontextprotocol.io