推理时计算扩展:比扩展模型参数更有效的优化策略

Abstract让大语言模型(LLM)能够通过使用更多推理时计算来改进输出,是构建能够在开放式自然语言任务上持续自我改进的通用agent的关键一步。本文研究了LLM推理时计算的扩展规律,重点回答一个问题:如果允许LLM使用固定但非平凡的推理时计算量,它能在挑战性提示上将性能提升多少?我们发现,在许多任务上,适当地扩展推理时计算可以比扩展模型参数更有效地提升性能。这一发现为LLM的发展开辟了新的方向——不是一味追求更大的模型,而是让模型学会如何更好地”思考”。 Key Contributions 推理时计算扩展定律:首次系统性地研究了LLM推理时计算的扩展规律,揭示了在固定模型参数下,增加推理时计算如何影响性能 与参数扩展的对比:通过大量实验证明,在许多任务上,扩展推理时计算比扩展模型参数更有效且成本更低 多种扩展策略对比:评估了best-of-N采样、beam search、sequ...

阅读全文

© 2025 Generative AI Discovery All Rights Reserved.
Theme by hiero