论文概述受人类类比推理的启发,本文介绍了类比提示(Analogical Prompting),这是一种新颖的方法,提示大型语言模型在解决问题之前自我生成相关的范例和知识。与需要手动制作示例的传统 CoT 不同,类比提示使大型语言模型能够从其内部知识中提取以创建针对问题的演示,无需标注的范例即可实现卓越性能。
论文信息:
发布时间:2023-10-03
作者:Michihiro Yasunaga, Xinyun Chen, Yujia Li等
机构:Google DeepMind,斯坦福大学
研究方向:提示工程,大型语言模型推理
核心技术:类比推理(Analogical Reasoning)
研究背景大型语言模型(LLM)在各类任务中展现出强大的能力,但如何有效引导模型进行复杂推理仍是一个挑战。本研究针对以下问题展开:
现有问题
传统提示方法在复杂推理任务上表现不佳
模型难以处理需...