论文概述LinearRAG是一种针对大规模语料库的新型检索增强生成框架,旨在解决当前RAG系统在处理大规模非结构化语料和不可靠知识图谱构建方面的局限性。该方法的核心创新在于构建了一个名为”三图”(Tri-Graph)的轻量级图结构,通过避免不稳定的关系建模,实现了与语料库规模呈线性关系的扩展能力。LinearRAG采用两阶段检索策略,在处理复杂推理任务时能够更准确地定位相关段落,有效减少了大语言模型的幻觉问题。
论文信息:
发布时间:2025-10-11
作者:Luyao Zhuang, Shengyuan Chen, Yilin Xiao, Huachi Zhou, Yujing Zhang, Hao Chen, Qinggang Zhang, Xiao Huang
研究方向:上下文工程 (Context Engineering), 检索增强生成 (Retrieval-Augme...
AI Agent的有效上下文工程
文章概述本文由 Anthropic 应用 AI 团队撰写,介绍了上下文工程(Context Engineering)这一概念,它是提示工程(Prompt Engineering)在 AI Agent 时代的进化形态。随着大语言模型能力的提升,挑战不再仅仅是编写完美的提示词,而是如何策略性地管理进入模型有限注意力预算的信息。文章深入探讨了系统提示词设计、工具定义、上下文检索策略,以及长时任务的技术手段,为构建高效可靠的 AI Agent 提供了实践指南。
文章信息:
发布时间:2025-09-29
作者:Prithvi Rajasekaran, Ethan Dixon, Carly Ryan, Jeremy Hadfield
机构:Anthropic Applied AI Team
研究方向:上下文工程 (Context Engineering), AI Agent 架构
核心技术:...
Memory-R1: 通过强化学习增强大语言模型Agent的记忆管理能力
论文概述Memory-R1是一个创新性的强化学习框架,旨在解决大语言模型的无状态特性所带来的记忆局限问题。该框架通过引入两个专门化的智能体来实现自适应的外部记忆管理:记忆管理器(Memory Manager)负责学习结构化的记忆操作(ADD、UPDATE、DELETE),而回答智能体(Answer Agent)则负责预选和推理相关的记忆条目。Memory-R1的突破性在于使用结果驱动的强化学习技术,在极少监督的情况下实现高效的记忆管理。
论文信息:
发布时间:2025-08-27
作者:Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Kristian Kersting, Jeff Z. Pan, Hinrich Schütze, Volker Tresp...
大语言模型时代的RAG评估:综合性调研
论文概述这篇综述性论文系统地回顾了检索增强生成(RAG)系统在大语言模型时代的评估方法和框架,为这一快速发展的领域提供了全面的技术图谱。论文深入分析了RAG评估的多个维度,包括系统性能、事实准确性、安全性和计算效率等核心指标,系统性地回顾了传统评估方法,并详细探讨了针对LLM驱动的RAG系统的新兴评估技术。此外,还编译和分类了大量RAG专用数据集,为研究者选择合适的评估基准提供了宝贵参考。
论文信息:
发布时间:2025-04-21
作者:Aoran Gan, Hao Yu, Kai Zhang, Qi Liu, Wenyu Yan, Zhenya Huang, Shiwei Tong, Guoping Hu
研究方向:上下文工程 (Context Engineering), 检索增强生成 (Retrieval-Augmented Generation), 评估方法 (Evalua...
Infinite Retrieval: 基于注意力增强的无限长上下文处理
论文概述Infinite Retrieval(InfiniRetri)是一项突破性的研究成果,解决了大语言模型在处理超长上下文输入时面临的核心挑战。该方法的创新之处在于利用模型自身的注意力信息来实现对无限长输入的精确检索,而无需任何额外训练。研究团队发现模型的注意力分布与生成答案之间存在强相关性,基于这一洞察设计了InfiniRetri方法。在Needle-In-a-Haystack测试中,该方法处理超过100万token时达到100%准确率,在真实场景中带来高达288%的性能提升。
论文信息:
发布时间:2025-02-18
作者:Xiaoju Ye, Zhichun Wang, Jingyuan Wang
研究方向:上下文工程 (Context Engineering), 长上下文处理 (Long-Context Processing)
核心技术:注意力增强 (Attentio...