从错误中进行上下文原理学习

从错误中进行上下文原理学习论文概述本文是一篇关于大型语言模型 (LLM)的研究论文,由 Tianjun Zhang 等8位研究者共同完成。 LEAP(学习原理)引入了一种新颖的上下文学习 (In-Context Learning)范式,从错误中学习而非仅从正确示例学习。通过有意诱导错误、反思错误并推导出明确的任务特定原理,LEAP 显著提升了大型语言模型 (LLM)在推理任务上的性能。这种方法模仿了人类学习,即我们往往从错误中学到的比从成功中学到的更多。 研究目标本研究的主要目标包括: 引入 LEAP,一种从诱导错误中学习显式原理的新型上下文学习 (In-Context Learning)范式 证明从错误中学习比仅从正确示例学习更有效 提出三阶段流程:诱导错误、推导原理、将原理应用于新查询 研究背景当前挑战 推理能力不足:模型在复杂推理任务上表现欠佳 多步推理困难:难以处理需要多...

阅读全文

© 2025 Generative AI Discovery All Rights Reserved.
Theme by hiero