GREATERPROMPT: 统一、可定制、高性能的开源提示优化工具包论文概述本文是一篇关于提示工程的优化方法论文,由 Wenliang Zheng 等4位研究者共同完成。
GREATERPROMPT通过提供统一、可定制的框架,将多种优化技术整合到单一API下,从而实现提示优化的民主化。与现有方法相比,这些方法要么缺乏标准化、灵活性有限,要么依赖昂贵的专有API,GREATERPROMPT通过文本反馈优化(适用于大型大语言模型)和内部梯度优化(适用于小型模型)来适应不同模型规模。借助包括GitHub、PyPI和Web UI在内的用户友好界面,它使专家研究人员和非技术用户都能在不同任务和模型规模上实现高性能的提示优化。
研究目标本研究的主要目标包括:
统一框架,在一致的API下整合多种提示优化方法
双重优化模式:大型模型的文本反馈和小型模型的梯度优化
消除对昂贵的闭源大语言模型API...