理解偏好学习中的性能差距:RLHF与DPO的二分法分析

Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO ArXiv ID: 2505.19770作者: Ruizhe Shi, Minhak Song, Runlong Zhou, Zihan Zhang, Maryam Fazel, Simon S. Du发布日期: 2025年5月26日最后更新: 2025年10月3日 摘要本文对强化学习人类反馈(RLHF)和直接偏好优化(DPO)之间的性能差距进行了精细的理论分析。研究将性能差距分解为两个来源,并在精确优化和有限样本优化场景下进行分析。结果显示,根据模型误规范的类型,RLHF、DPO或在线DPO可能各自表现更优。值得注意的是,当奖励模型类和策略模型类同构且都存在误规范时,在线DPO可以同时优于RLHF和标准DPO。...

阅读全文

RLAIF 对比 RLHF:使用 AI 反馈扩展人类反馈强化学习

论文概述这篇 Google Research 论文提供了基于 AI 反馈的强化学习(RLAIF)与传统 RLHF 之间的首次全面实证比较,证明 AI 生成的偏好标签可以以大幅降低的成本匹配人类反馈质量。在三个任务(摘要、有帮助的对话、无害对话)中,RLAIF 实现了与 RLHF 相当的性能,人类评估者对两者同样偏好(约 70% 优于监督基线)。关键创新是使用现成的大型语言模型生成偏好标签,而不是昂贵的人工标注,并引入了直接 RLAIF(d-RLAIF),该方法在 RL 期间直接从大型语言模型获取奖励,无需训练单独的奖励模型,实现了卓越的性能。该工作发表于 ICML 2024,验证了 RLAIF 作为 RLHF 的可扩展替代方案,将标注成本降低了 10 倍以上,同时保持对齐质量。 论文信息: 发布时间:2023-09-01 作者:Harrison Lee, Samrat Phatal...

阅读全文

© 2025 Generative AI Discovery All Rights Reserved.
Theme by hiero