自洽性改进语言模型中的思维链推理

论文概述本论文提出了自洽性 (Self-Consistency),这是一种新颖的解码策略,通过替换朴素的贪婪解码显著改进思维链提示。自洽性不是只采用贪婪路径,而是采样一组多样化的推理路径,并通过对采样路径进行边缘化来选择最一致的答案。这利用了一个直觉:复杂的推理问题通常允许多种不同的思考方式,但都导向唯一的正确答案,在多个推理基准测试中实现了显著的性能提升。 论文信息: 发布时间:2022-03-21 作者:Xuezhi Wang, Jason Wei, Dale Schuurmans等 机构:Google Research 研究方向:提示工程 (Prompt Engineering), 大型语言模型推理 (LLM Reasoning) 核心技术:自洽性 (Self-Consistency) 研究背景大型语言模型在思维链提示下展现出强大的推理能力,但单次生成的结果可能不稳定。本研...

阅读全文

© 2025 Generative AI Discovery All Rights Reserved.
Theme by hiero