Retrieval-Augmented Generation with Graphs (GraphRAG)
ArXiv ID: 2501.00309作者: Haoyu Han, Yu Wang, Harry Shomer, and 15 other authors发布日期: 2025-01-08
摘要检索增强生成(RAG)已成为通过整合外部知识增强大语言模型的强大范式。传统RAG系统依赖于从非结构化文本进行基于向量的检索,而GraphRAG利用图结构数据通过节点和边编码大规模异构和关系信息。本综述对GraphRAG进行了全面考察,提出了一个整体框架,定义了包括查询处理器、检索器、组织器、生成器和数据源在内的关键组件。我们系统地回顾了针对不同领域定制的技术,并讨论了图构建、检索效率和与大语言模型集成方面的挑战。通过考察医疗、金融和电子商务等专业领域的实现,我们突出了图结构在捕获复杂关...