A Survey of Automatic Prompt Engineering: An Optimization Perspective
ArXiv ID: 2502.11560作者: Wenwu Li, Xiangfeng Wang, Wenhao Li, Bo Jin发布日期: 2025-02-17
摘要基础模型的兴起使研究焦点从资源密集型的微调转向提示工程——一种通过输入设计而非权重更新来引导模型行为的范式。本综述首次从统一的优化视角对自动提示工程进行了全面考察。我们将提示优化形式化为离散、连续和混合提示空间上的最大化问题,考察了基于基础模型的优化、进化方法、基于梯度的优化和强化学习方法。通过分析优化变量(指令、软提示、样例)、任务特定目标和计算框架,我们在理论形式化与跨文本、视觉和多模态领域的实际实现之间架起桥梁。虽然手动提示工程在可扩展性、适应性和跨模态对齐方面存在局限...
基于图的检索增强生成(GraphRAG)
Retrieval-Augmented Generation with Graphs (GraphRAG)
ArXiv ID: 2501.00309作者: Haoyu Han, Yu Wang, Harry Shomer, and 15 other authors发布日期: 2025-01-08
摘要检索增强生成(RAG)已成为通过整合外部知识增强大语言模型的强大范式。传统RAG系统依赖于从非结构化文本进行基于向量的检索,而GraphRAG利用图结构数据通过节点和边编码大规模异构和关系信息。本综述对GraphRAG进行了全面考察,提出了一个整体框架,定义了包括查询处理器、检索器、组织器、生成器和数据源在内的关键组件。我们系统地回顾了针对不同领域定制的技术,并讨论了图构建、检索效率和与大语言模型集成方面的挑战。通过考察医疗、金融和电子商务等专业领域的实现,我们突出了图结构在捕获复杂关...
大语言模型在不同NLP任务中的提示工程方法综述
大语言模型在不同NLP任务中的提示工程方法综述论文概述本文是一篇关于提示工程的综述性研究论文,由 Shubham Vatsal 等2位研究者共同完成。
This 综合性 综述 examines 44 research papers covering 39 different prompting methods applied across 29 NLP tasks. The paper provides a 系统性 taxonomy of 提示工程 techniques and evaluates their performance across various datasets and 大语言模型s, offering practical guidance for researchers and practitioners in selecting appropriate prom...
大语言模型提示工程系统性综述:技术与应用
大语言模型提示工程系统性综述:技术与应用论文概述本文是一篇关于提示工程的综述性研究论文,由 Pranab Sahoo 等6位研究者共同完成。
This 综合性 综述 provides a structured overview of recent advancements in 提示工程 for 大语言模型 (大语言模型s) and vision-language models (VLMs). It addresses the gap in 系统性 organization by categorizing approaches by application area, providing detailed summaries of prompting methodologies, models, datasets, and creating a taxonomy of techniq...