论文概述通用自适应提示(Universal Self-Adaptive Prompting, USP)通过实现自动提示设计的有效零样本学习来解决 Transformers 的架构限制。与依赖”一个提示适用所有”策略的传统方法不同,USP 对任务进行分类,并选择任务适当的查询和模型生成的响应作为伪示例,以完全自动化的方式将上下文学习泛化到零样本设置。
论文信息:
发布时间:2023-05-24
作者:Xingchen Wan, Ruoxi Sun, Hootan Nakhost等
机构:Google Research
研究方向:提示工程,大型语言模型推理
核心技术:零样本学习(Zero Shot Learning)
研究背景大型语言模型(LLM)在各类任务中展现出强大的能力,但如何有效引导模型进行复杂推理仍是一个挑战。本研究针对以下问题展开:
现有问题
传统提示方法在复杂推理任务上...